Що таке сонячні спалахи?

A solar flare is basically a giant explosion on the surface of our Sun which occurs when magnetic field lines from sunspots tangle and erupt. A solar flare is defined as a sudden, rapid, and intense variation in brightness. A solar flare occurs when magnetic energy that has built up in the solar atmosphere is suddenly released. Material is heated to many millions of degrees in just minutes and radiation is emitted across virtually the entire electromagnetic spectrum, from radio waves at the long wavelength end, through optical emission to X-rays and gamma rays at the short wavelength end. The amount of energy released is equivalent to millions of nuclear bombs exploding all at the same time! Solar flares are an often occurrence when the Sun is active in the years around solar maximum. Many solar flares can occur on just one day during this period! Around solar minimum, solar flares might occur less than once per week. Large flares are less frequent than smaller ones. Some (mostly stronger) solar flares can launch huge clouds of solar plasma into space which we call a coronal mass ejection. When a coronal mass ejection arrives at Earth, it can cause a geomagnetic storm and intense auroral displays.

A spectacular solar flare as seen by the NASA's Solar Dynamics Observatory in the 193 Ångström wavelength.

Зображення: A spectacular solar flare as seen by the NASA's Solar Dynamics Observatory in the 193 Ångström wavelength.

Класифікація сонячних спалахів

Сонячні спалахи класифікуються як A, B, C, M або X за піковим потоком (у ватах на квадратний метр, Вт/м2) рентгенівських променів від 1 до 8 Ангстрема поблизу Землі, що вимірюється за допомогою приладу XRS на борту супутника GOES-15, який знаходиться на геостаціонарній орбіті над Тихим океаном. У таблиці нижче показані різні класи сонячних спалахів:

Клас Вт/м2 між 1 та 8 Ангстрема
A <10-7
B ≥10-7 <10-6
C ≥10-6 <10-5
M ≥10-5 <10-4
X ≥10-4

Кожна категорія класів рентгенівських променів ділиться на логарифмічну шкалу від 1 до 9. Наприклад: від B1 до B9, C1 до C9 тощо. Спалах X2 удвічі потужніший від спалаху X1 і в чотири рази потужніший, ніж Спалах M5. Категорія класу X рентгенівських променів дещо відрізняється і не зупиняється на X9, а продовжується далі. Сонячні спалахи X10 або сильніші іноді також називають “сонячними спалахами класу Супер X”.

Сонячні спалахи класів A і B

Клас A & B - це найнижчий клас сонячних спалахів. Вони дуже поширені і не дуже цікаві. Фоновий потік (кількість випромінювання, коли немає спалахів) часто знаходиться в діапазоні B під час сонячного максимуму та в діапазоні А під час сонячного мінімуму.

Сонячні спалахи класу С

Сонячні спалахи класу С - це незначні сонячні спалахи, які майже не впливають на Землю. Тільки сонячні спалахи класу С, що мають достатню тривалість, можуть призвести до викиду корональної маси, але вони зазвичай повільні, слабкі і рідко викликають значні геомагнітні порушення тут на Землі. Фоновий потік (кількість випромінювання, коли немає спалахів) може знаходитися в нижньому діапазоні класу С, коли складна сонячна пляма з’являється на оберненому до Землі сонячному диску.

Сонячні спалахи класу М

Сонячні спалахи класу М - це те, що ми називаємо середньовеликими сонячними спалахами. Вони спричиняють невеликі (R1) та помірні (R2) радіоперешкоди на денній стороні Землі. Деякі виверження сонячних спалахів класу М також можуть викликати сонячні радіаційні бурі. Сильні, тривалі сонячні спалахи класу М можуть стати кандидатами для викиду корональної маси. Якщо сонячний спалах зафіксований в районі центру сонячного диска, орієнтованого до Землі, і розпочинає викидання корональної маси у бік нашої планети, існує велика ймовірність того, що в результаті геомагнітна буря буде достатньо сильною для видимого Полярного Сяйва на середніх широтах.

Сонячні спалахи X класу

Сонячні спалахи X класу - найбільші та найсильніші з усіх. В середньому сонячні спалахи такої величини трапляються приблизно 10 разів на рік і частіше зустрічаються під час сонячного максимуму, ніж сонячного мінімуму. Ці спалахи викликають радіоперешкоди, від сильних до екстремальних (від R3 до R5), на денній поверхні Землі. Якщо сонячний спалах вивергається і знаходиться поблизу центру сонячного диска, оберненого до Землі, це може спричинити сильну і довготривалу сонячну радіаційну бурю та викликати значне викидання корональної маси, що може призвести до сильного (G4) та екстремального (G5) геомагнітного шторму на Землі.

X-class solar flare as seen by NASA's Solar Dynamics Observatory in the 131 Ångström wavelength

Зображення: Сонячний спалах X класу, який спостерігається з Обсерваторії Сонячної Динаміки NASA на довжині хвилі 131 Ангстрем.

Отже, що вище за X9? Клас Х продовжується після Х9 замість того, щоб отримати нову літеру, і ці сонячні спалахи часто називають сонячними спалахами “Супер Х класу”. Однак сонячні спалахи, які досягають або навіть перевершують клас X10, дуже рідкісні і виникають лише кілька разів під час сонячного циклу. Насправді добре, що ці потужні сонячні спалахи трапляються не так часто, оскільки наслідки на Землі можуть бути серйозними. Відомо, що викиди корональних мас, які можуть бути запущені такими сонячними спалахами, можуть викликати проблеми з нашою сучасною технікою, такою як супутники та лінії електропередач.

Одна річ, яку слід згадати при спалахах класу X - це те, що сонячний спалах X20 не в 10 разів сильніший від сонячного спалаху X10. Сонячні спалахи X10 дорівнюють потоку рентгенівських променів 0,001 Вт/м2, тоді як сонячний спалах X20 дорівнює 0,002 Вт/м2 при довжині хвилі у 1-8 Ангстрем.

Найбільший сонячний спалах, зафіксований з моменту, коли супутники почали вимірювати їх у 1976 році, оцінювався як сонячний спалах X28, що стався 4 листопада 2003 року під час Сонячного циклу 23. Довгий канал XRS на супутнику GOES-12 насичувався до X17 протягом 12 хвилин інтенсивного випромінювання. Пізніший аналіз наявних даних дає оцінений піковий потік X28, однак є вчені, які вважають, що цей сонячний спалах був навіть сильнішим за X28. Добрим для нас було те, що група сонячних плям, яка виробляла цей сонячний спалах, вже в основному закінчила обертання на сонячному диску, оберненому до Землі, коли сталався сонячний спалах X28. Варто зазначити, що станом на березень 2017 року не було сонячного спалаху, який насичував би канали XRS на GOES-15, але очікується, що він це зробить якщо буде приблизно такий самий рівень потоку.

Високочастотні радіоперешкоди, викликані сонячними спалахами

Сплески рентгенівського та екстремального ультрафіолетового випромінювання, які трапляються під час сонячних спалахів і можуть спричинити проблеми з радіопередачами високої частоти (ВЧ) на сонячній стороні Землі та найбільш інтенсивні в місцях, де Сонце знаходиться над головою. Під час таких подій порушується радіозв’язок високої частоти (ВЧ) (3-30 МГц), хоча згасання та зменшення рівня прийому може траплятись на дуже високих частотах (УКВ) (30-300 МГц) та навіть вище.

Ці радіоперешкоди є результатом посиленої щільності електронів у нижній іоносфері (D-шарі) під час сонячного спалаху, що спричиняє велике збільшення кількості енергії, що втрачається радіохвилями при проходженні через цей шар. Цей процес заважає радіохвилям досягати набагато вищих шарів E, F1 і F2, де ці радіосигнали зазвичай заломлюються і відскакують назад на Землю.

Радіоперешкоди, спричинені сонячними спалахами, є найпоширенішими подіями космічної погоди, які впливають на Землю, а також такими, що найбільше впливають на нас. Незначні події відбуваються приблизно 2000 разів за кожен сонячний цикл. Електромагнітне випромінювання, яке утворюється під час спалахів, рухається зі швидкістю світла, займаючи трохи більше 8 хвилин для подорожі від Сонця до Землі. Цей тип радіоперешкод може тривати від декількох хвилин до декількох годин, залежно від тривалості сонячного спалаху. Наскільки сильні радіоперешкоди - залежить від сили сонячного спалаху.

Найвища частота, що зазнала впливу (HAF) під час радіоперешкод від рентгенівського випромінювання під час місцевого полудня базується на поточному значенні потоку рентгенівського випромінювання між 1-8 Ангстрема. Найвища частота, що зазнала впливу (HAF) може бути отримана за формулою. Нижче ви знайдете таблицю, де можна побачити, якою є HAF під час конкретного рентгенівського потоку.

Рентгенівський клас та потік GOES Найвища частота, що зазнала впливу
M1.0 (10-5) 15 MHz
M5.0 (5×10-5) 20 MHz
X1.0 (10-4) 25 MHz
X5.0 (5×10-4) 30 MHz

R-шкала

NOAA використовує п’ятирівневу систему, яку називають шкалою R, щоб показувати ступінь інтенсивності радіоперешкод, пов’язаних з рентгенівськими променями. Ця шкала коливається від R1 для незначних радіоперешкод до R5 для дуже сильних радіоперешкод, при цьому R1 є найнижчим рівнем, а R5 - найвищим рівнем. Кожен R-рівень має певну рентгенівську яскравість, пов’язану з ним. Вона коливається від R1 для рентгенівського потоку M1 до R5 для рентгенівського потоку X20. У Twitter ми надсилаємо сповіщення, як тільки досягнуто певний поріг радіоперешкод. Оскільки кожен рівень радіоперешкод асоціюється з певним рівнем яскравості рентгенівського випромінювання GOES, ви можете пов’язувати ці сповіщення безпосередньо із сонячним спалахом, що відбувається в цей момент. Ми можемо визначити наступні класи радіоперешкод:

R-шкала Опис Рентгенівський поріг GOES за класом та потоком Середня частота
R1 Слабка буря M1 (10-5) 2000 на цикл (950 днів на цикл)
R2 Помірна буря M5 (5×10-5) 350 на цикл (300 днів на цикл)
R3 Сильна буря X1 (10-4) 175 на цикл (140 днів на цикл)
R4 Жорстка буря X10 (10-3) 8 на цикл (8 днів на цикл)
R5 Екстремальна буря X20 (2×10-3) Менше, ніж 1 протягом циклу

На зображенні нижче показано вплив сонячного спалаху X1 (рівень R3) на освітленій сонцем стороні Землі. Ми можемо бачити, що найвища частота, що зазнала впливу (HAF) - приблизно 25 МГц там, де Сонце знаходиться безпосередньо над головою. Радіочастоти, нижчі за HAF, зазнають ще більшого впливу.

NOAA SWPC - продукт поглинання D-області. Модель прогнозування поглинання D-області використовується як керівництво для розуміння високочастотної (HF) радіодеградації та перебоїв зв’язку, які це може спричинити.

Зображення: NOAA SWPC - продукт поглинання D-області. Модель прогнозування поглинання D-області використовується як керівництво для розуміння високочастотної (HF) радіодеградації та перебоїв зв’язку, які це може спричинити.

<< На попередню сторінку

Останні новини

Підтримайте SpaceWeatherLive.com!

Багато людей відвідують сайт SpaceWeatherLive, щоб слідкувати за сонячною та авроральною активністю, але зі збільшенням трафіку хостинг також стає дорожчим. Будь-ласка, подумайте про пожертву, якщо вам подобається SpaceWeatherLive, щоб ми могли і надалі підтримувати цей сайт і платити за хостинг!

11%

Факти про космічну погоду

Останній X-спалах:10.09.2017X8.2
Останній M-спалах:20.10.2017M1.0
Останній геомагнітний шторм:19.02.2020Kp5 (G1)
Кількість днів без сонячних плям у 2020:35
Поточний період стабільної погоди (днів):20

Цей день в історії*

Сонячні спалахи
12002M4.4
22002M3.9
32000M1.8
42002M1.4
51999M1.3
Ар-індексG
1199495G4
2200021G1
3200619
4200314
5201910
*з 1994 року

Соціальні мережі