Vanliga frågor

Ett av de största uppdraget vi har här på SpaceWeatherLive är att våra besökare lär sig om rymdväder när de hittat till oss. På grund av det har vi utvecklat vår stora Hjälp-sektion med artiklar och bilder där vi djupdyker in i världen av rymdväder. Fortfarande kommer frågor till oss, och vissa mer återkommande än andra. Dessa vanliga frågor hittar du just här.

Solaktivitet

We don’t know. There are people and even scientists who claim that the Sun is heading for a new Maunder Minimum. The Maunder Minimum was a period of about 70 years between 1645 and 1715 when very few sunspots appeared on the solar disk. While it is true that solar cycle 24 has been much less active than what we’re used to considering of the past few decades, we do not yet have an accurate way to predict solar activity so far in advance. It cannot be said right now if the Sun is about to enter a long lasting period of exceptional quietness.

Solar flares can not only differ dramatically in strength but also in duration. Some solar flares last for hours and others last only a couple of minutes. Long duration solar flares are often (but not always!) accompanied by an ejection of solar plasma. This is what we call a coronal mass ejection. Solar flares that aren’t very long in duration (impulsive) can still launch a coronal mass ejection but this is fairly rare, and if they do, these coronal mass ejections are often not as strong as coronal mass ejections that are launched during long duration events.

There isn’t an exact time limit that a solar flare needs to reach in order for it to be classified as a long duration event but the American NOAA SWPC classifies a solar flare as a long duration event if the solar flare is still in progress 30 minutes after it started.

Image: Example of an impulsive solar flare.

Image: Example of a long duration solar flare.

During solar eruptions, the Sun often emits large amounts of protons and electrons. These protons are flung out in all directions but a good bit of them follow the magnetic field lines of the interplanetary magnetic field. Because the Sun spins on her own axis, the interplanetary magnetic field forms a shape which you could compare to ballerina’s skirt. This is what we call the Parker spiral. Because of the Parker spiral, protons launched from areas near or even behind the west limb can reach Earth.

Bild: The Parker Spiral.

NASA’s Solar Dynamics Observatory is in a geosynchronous orbit around our planet. From there it normally has an uninterrupted view of the Sun. However, twice a year near the equinoxes the Earth blocks SDO’s view of the Sun for a period of time each day. These eclipses are fairly short near the beginning and end of these three week eclipse seasons but ramp up to 72 minutes in the middle. If you see an image from SDO that is completely black then you are likely looking at Earth!

Sometimes you might be lucky enough to see a much smaller object on the images from NASA’s Solar Dynamics Observatory: the Moon! The Moon can also appear on images from NASA’s Solar Dynamics Observatory but it will never block the entire Sun for a very long time like Earth does.

Animation: The Earth blocks SDO’s view of the Sun.

Animation: The Moon blocks SDO’s view of the Sun.

To determine the magnetic polarity of sunspots and a sunspot group’s magnetic classification we use magnetogram imagery from the SDO/HMI instrument. This is a line-of-sight magnetogram even though the magnetic field of the Sun is 3D. This makes it impossible to accurately determine a sunspot region’s magnetic layout near the limbs due to projection effect as the polarity of sunspots seem to change near the limbs.

Image: Projection effect.

No. Almost all of the coronal mass ejections that arrive at Earth do not cause any noteworthy problems. While it is true that very strong coronal mass ejections can cause numerous issues with our modern technology like satellites and high voltage power lines, we are much better prepared for such events these days than we we’re just decades ago. The famous Halloween solar storms of 2003 were the most powerful geomagnetic storms in modern history and while this solar storm did cause some minor issues like the (temporary) loss of some satellites and a short power blackout in southern Sweden, we should not worry that a solar storm, no matter how strong, could throw us back to the dark ages.

Difference images are created by subtracting one image from the foregoing picture. This shows what has changed from one frame to the other and are commonly used when analyzing solar events. Coronal mass ejections and their exact trajectory can sometimes be hard to spot using regular imagery making difference imagery often an invaluable tool. Solar eruptions are also much easier to spot and analyze with difference imagery.

Animation: Difference imagery from SDO of an eruption in 2015.

Animation: Difference imagery from SOHO/LASCO of a coronal mass ejection in 2017.

Norrsken i realtid

No. First you need to understand that a solar flare doesn’t cause aurora. Solar flares can launch large clouds of solar plasma which we call coronal mass ejections and it is these coronal mass ejections that can produce aurora when they arrive at our planet. We also need to know that not every solar flare launches a coronal mass ejection. In fact, most solar flares do not! If we do have a strong and eruptive solar flare, it also needs to come from a sunspot region that is close to the center of the Earth-facing solar disk or else there is a risk that the coronal mass ejection is launched in a direction away from Earth. While the light of a solar flare takes just 8 minutes to reach our planet, these coronal mass ejections travel at much slower speeds. Very fast coronal mass ejections can travel the Sun-Earth distance in just one day but these are very rare. Most coronal mass ejections take two to four days to arrive at Earth.
There are no accurate ways to predict hours in advance where aurora might be seen and also not at what exact time. The auroral oval is normally at its thickest around local midnight but of course the solar wind conditions at Earth also need to be favorable for aurora at your specific location. It is not impossible to see aurora early in the evening or close to morning if the solar wind conditions are favorable enough for your location. You can only accurately estimate if there will be chance for aurora at your location about 1 hour in advance. The Deep Space Climate Observatory (DSCOVR) satellite that measures the solar wind and interplanetary magnetic field parameters is located between the Sun and the Earth and it takes the solar wind anywhere from 30 minutes to about an hour to travel the distance from DSCOVR to Earth. Taking a look at the parameters measured by DSCOVR is always a great start if you wish to know if there will be a chance for aurora at your location in the near future. Want to know if there is chance at this exact moment? Then we recommend taking a look at a local magnetometer.

Any location on the high latitudes will be able to see auroras with a Kp of 4. For any location on the middle latitudes a Kp-value of 7 is needed. The low latitudes need Kp-values of 8 or 9. The Kp-value that you need of course depends on where you are located on Earth. We made a handy list which is a good guide for what Kp-value you need for any given location within the reach of the auroral ovals.

Important! Note that the locations below give you a reasonable chance to see auroras for the given Kp-index provided local viewing conditions are good. This includes but is not limited to: a clear sight towards the northern or southern horizon, no clouds, no light pollution and complete darkness.

KpSynlig från
0

Nordamerika:
Barrow (AK, Amerikas förenta stater) Yellowknife (NT, Kanada) Gillam (MB, Kanada) Nuuk (Grönland)

Europa:
Reykjavik (Island) Tromsø (Norge) Inari (Finland) Kirkenes (Norge) Murmansk (Ryssland)

1

Nordamerika:
Fairbanks (AK, Amerikas förenta stater) Whitehorse (YT, Kanada)

Europa:
Mo I Rana (Norge) Jokkmokk (Sverige) Rovaniemi (Finland)

2

Nordamerika:
Anchorage (AK, Amerikas förenta stater) Edmonton (AB, Kanada) Saskatoon (SK, Kanada) Winnipeg (MB, Kanada)

Europa:
Tórshavn (Färöarna) Trondheim (Norge) Umeå (Sverige) Kokkola (Finland) Arkhangelsk (Ryssland)

3

Nordamerika:
Calgary (AB, Kanada) Thunder Bay (ON, Kanada)

Europa:
Ålesund (Norge) Sundsvall (Sverige) Jyväskylä (Finland)

4

Nordamerika:
Vancouver (BC, Kanada) St. John's (NL, Kanada) Billings (MT, Amerikas förenta stater) Bismarck (ND, Amerikas förenta stater) Minneapolis (MN, Amerikas förenta stater)

Europa:
Oslo (Norge) Stockholm (Sverige) Helsinki (Finland) Saint Petersburg (Ryssland)

5

Nordamerika:
Seattle (WA, Amerikas förenta stater) Chicago (IL, Amerikas förenta stater) Toronto (ON, Kanada) Halifax (NS, Kanada)

Europa:
Edinburgh (Scotland) Gothenburg (Sverige) Riga (Lettland)

Södra hemisfären:
Hobart (Australien) Invercargill (Nya Zeeland)

6

Nordamerika:
Portland (OR, Amerikas förenta stater) Boise (ID, Amerikas förenta stater) Casper (WY, Amerikas förenta stater) Lincoln (NE, Amerikas förenta stater) Indianapolis (IN, Amerikas förenta stater) Columbus (OH, Amerikas förenta stater) New York City (NY, Amerikas förenta stater)

Europa:
Dublin (Irland) Manchester (Storbritannien) Hamburg (Tyskland) Gdańsk (Polen) Vilnius (Litauen) Moscow (Ryssland)

Södra hemisfären:
Devonport (Australien) Christchurch (Nya Zeeland)

7

Nordamerika:
Salt Lake City (UT, Amerikas förenta stater) Denver (CO, Amerikas förenta stater) Nashville (TN, Amerikas förenta stater) Richmond (VA, Amerikas förenta stater)

Europa:
London (England) Brussels (Belgien) Cologne (Tyskland) Dresden (Tyskland) Warsaw (Polen)

Södra hemisfären:
Melbourne (Australien) Wellington (Nya Zeeland)

8

Nordamerika:
San Francisco (CA, Amerikas förenta stater) Las Vegas (NV, Amerikas förenta stater) Albuquerque (NM, Amerikas förenta stater) Dallas (TX, Amerikas förenta stater) Jackson (MS, Amerikas förenta stater) Atlanta (GA, Amerikas förenta stater)

Europa:
Paris (Frankrike) Munich (Tyskland) Vienna (Österrike) Bratislava (Slovakien) Kiev (Ukraina)

Asien:
Astana (Kazakstan) Novosibirsk (Ryssland)

Södra hemisfären:
Perth (Australien) Sydney (Australien) Auckland (Nya Zeeland)

9

Nordamerika:
Monterrey (Mexico) Miami (FL, Amerikas förenta stater)

Europa:
Madrid (Spain) Marseille (Frankrike) Rome (Italien) Bucharest (Rumänien)

Asien:
Ulan Bator (Mongoliet)

Södra hemisfären:
Alice Springs (Australien) Brisbane (Australien) Ushuaia (Argentina) Cape Town (Sydafrika)

There can be multiple reasons for such a large difference between NOAA’s predicted Kp-index and the Kp that is being observed right now. The most common reason is that NOAA predicts that a coronal mass ejection is on its way to Earth and it was expected to arrive around that specific time. However, it can very well be that the coronal mass ejection is late and thus did not arrive yet meaning the geomagnetic conditions are still calm even though significantly more activity was expected. It is very hard to accurately predict the arrival time of a coronal mass ejection so it is not uncommon that coronal mass ejections arrive several hours after the predicted arrival time.

There is no difference between Kp5 and G1. NOAA uses a five-level system called the G-scale, to indicate the severity of both observed and predicted geomagnetic activity. This scale is used to give a quick indication of the severity of a geomagnetic storm. This scale ranges from G1 to G5, with G1 being the lowest level and G5 being the highest level. Conditions below storm level are labelled as G0 but this value is not commonly used. Every G-level has a certain Kp-value associated with it. This ranges from G1 for a Kp-value of 5 to G5 for a Kp-value of 9. The table below will help you with that.

G-skalaKpNorrsken i realtidGenomsnittlig frekvens
G04 och lägreUnder stormnivå
G15Små stormförhållanden1700 per cykel (900 dagar per cykel)
G26Måttlig storm600 per cykel (360 dagar per cykel)
G37Stark storm200 per cykel (130 dagar per cykel)
G48Allvarlig storm100 per cykel (60 dagar per cykel)
G59Extrem storm4 per cykel (4 dagar per cykel)
Om du vill ha en god chans att se Aurora under din semester måste du hitta en plats så nära den orala ovalen som möjligt. Den aurorala ovalen är ett område runt magnetiska poler på vår planet där Aurora förekommer oftast, även under lugna rymdväderförhållanden. Denna oval är inte lika stor hela tiden: under stark geomagnetisk aktivitet kommer denna oval att utvidgas till lägre breddgrader vilket innebär att auroran kan ses från lägre breddgrader men detta förekommer naturligtvis inte så ofta. När du är på semester vill du ha den bästa chansen att se Aurora även under lugnt rymdväder naturligtvis. Det betyder att du troligen kommer att behöva resa norrut. Det handlar om plats! Den aurorala ovalen är belägen på följande platser under låg geomagnetisk aktivitet. Norra halvklotet: Alaska, norra Kanada, södra Grönland, Island, norra Norge, norra Sverige, norra Finland och norra Ryssland. För södersken måste du åka till Antarktis.
Ja. Om auroran är tillräckligt stark är det absolut fortfarande möjligt att se detta fenomen under en fullmåne. Vi måste dock ta i beaktning att månskenet är ganska starkt jämfört med aurora så svag aurora kan vara svårt eller till och med omöjligt att se. Speciellt för lägre breddgrader vill vi verkligen så lite månsken som möjligt för att öka våra odds för att se aurora.
Det stämmer faktiskt. Under veckorna runt jämkammaren (astronomisk händelse där planet för jordens ekvatorn passerar solens centrum) kan norrskenet vara lite mer aktivt än vid andra tillfällen. Varför detta inträffar är ännu inte fullt ut förstått men forskare tror att jordens lutning på något sätt gynnar förbättrade geomagnetiska förhållanden runt jämhöjningen.
Många kameror kan idag producera kvalitetsbilder av norrskenet. Det finns emellertid några saker du måste tänka på om du funderar på att bli seriös i norrskensfotografvärlden. Först måste du skaffa en kamera som har ett manuellt läge (M). För norrskensfotografering vill vi oftast ha full kontroll över kameran, eftersom vi ska ställa in kameran att göra exakt det vi vill. Om du låter kameran bestämma vilka inställningar den kommer att använda än du kommer troligen att hamna med ett mindre tillfredsställande resultat. Det andra du måste införskaffa är ett stativ eftersom vi kommer att använda längre slutartider. Du kan inte använda en slutartid på låt oss säga 10 sekunder och hålla kameran perfekt för hand. Du kommer att flytta kameran även om du försöker ditt allra bästa och kommer hem med suddiga bilder. Så det är mycket viktigt att investera i ett stativ! När det gäller linser är kitlinser ofta mycket kapabla att producera fina bilder av aurora borealis. Om du har pengar kan du överväga att få ett bredare och ett snabbare (lägre f-stop) objektiv så att du inte behöver exponera så länge men det är inte viktigt. För att minska kameraskakningen ännu mer kan en fjärrkontrollsutlösare också vara ett mycket praktiskt verktyg.
Nej, Aurora Borealis och Aurora Australis försvinner inte helt under solminimum men det kommer att vara mindre frekvent under solminimum. Solminimum är en period där mycket få solfläckar visas på solen. Färre solfläckar innebär färre solfällningar och färre utkast av koronalmassa som slungas mot vår planet. Den normala solvinden kommer inte att försvinna och koronala hål kommer fortfarande att finnas när och då men de kommer att visas mindre ofta nära ekvatorn och vara mindre i storlek. Även om det är sant att det är mindre geomagnetiska stormar under åren runt solminimum, kommer norrskenet fortfarande att vara synlig då och då på höga breddgrader. Eftersom det inte finns så många starka solstormar under solminimum som under solmaximum, kommer det inte att hända så ofta att norrskensovalen expanderar till lägre breddgrader men norrsken kommer då och då att dyka upp på platser nära norrskensovalen, som norr Skandinavien och Alaska men kanske inte lika ofta som under solens maximum.
Nej. Polariteten i det interplanetära magnetfältet och nord-syd-riktningen (Bz) för det interplanetära magnetfältet är två mycket olika saker. Även om det är sant att vi talar om ett negativt Bz-värde när nord-syd-riktningen för det interplanetära magnetfältet svänger söderut är det inte på något sätt relaterat till polariteten i det interplanetära magnetfältet. Polariteten i det interplanetära magnetfältet är inte viktigt om du bara är intresserad av att veta om det finns chans för norrsken ikväll. Nord-syd-riktningen (Bz) för det interplanetära magnetfältet är dock en viktig ingrediens när det gäller norrskensaktivitet, men detta kan inte förutsägas. Nord-syd-riktningen (Bz) för det interplanetära magnetfältet är först känt när det passerar DSCOVR-satelliten. Därifrån tar det solvinden bara 30 till 60 minuter att komma fram till jorden.
There are people who claim that they heard the aurora with their own ears during strong auroral activity but there is no solid evidence that aurora produces sound waves which the human ear could pick up. Auroral emissions occur so high up in the atmosphere (well above 50 miles/80 kilometers) and the air is so thin there, that even if the aurora produces sound waves, these waves would never be able to reach the surface of our planet.
Geomagnetically induced currents is the space weather term used to describe electricity flowing through the ground during a geomagnetic storm. Changing magnetic fields cause currents to flow in wires and other conductors. When the local magnetic field begins to vibrate, electricity begins to flow. Geomagnetically induced currents can cause voltage fluctuations in electrical grids and damage high-voltage power transmission transformers. This can in extreme cases cause an interruption of power supply. Long pipe lines are also susceptible. Geomagnetically induced currents can increase the rate of corrosion which reduces the service life of a pipeline.

Övriga frågor

Earth has about 24 time zones. We say "about" because some countries or regions use local times that deviate half on hour from these zones. However, as soon as we talk about space weather or even science in general, there is really only one time that matters and that is the Coordinated Universal Time (UTC). You will find this time everywhere on our website. Use the map below te see the difference between the UTC time and the time zone that you are in. Click on the image to view a larger version.

Tidszoner

Bild: Standard time zones of the world. Source: Wikimedia Commons.

Let's work with some examples: imagine you are in Vancouver, Canada in the Pacific Standard Time time zone. According to the UTC time, it is 21 UTC. To convert the UTC time to our local time we have to subtract 8 hours from the UTC time. 21 minus 8 results in a local time of 13 PST. During daylight saving time (Pacific Daylight Time) we subtract 7 hours from the UTC time and that results in a local time of 14 PDT.

Let's try again but this time we are in Amsterdam, the Netherlands. To convert 21 UTC to our local time we add 1 hour and that results in a local time of 22h. During daylight saving time we add 2 hours and that results in a local time of 23h.

Do keep in mind the date when converting UTC to your local time. We once again take Vancouver, Canada as an example: it currently is 14 November, 02h UTC time. This results in 18h on 13 November local time in Vancouver, Canada.

No. There are people who claim that the Sun is responsible for seismic activity here on Earth but there is absolutely no scientific evidence that space weather and earthquakes are related in any way.

Om webbplatsen

All the data and information that we publish on SpaceWeatherLive can not be downloaded directly from our website. All of the information that we publish come from external sources that are freely accessible for everybody. If you are interested in certain data that we provide on SpaceWeatherLive we advise you to download it directly from the original source. The data on our website is always accompanied by a footnote that indicates from which website or institution the data came from. We also have a special page with handy links where we have a list of websites, many of which we use to get the data that we display on our website.
Yes. We have an app available for iOS and Android that brings you the familiar SpaceWeatherLive experience to your mobile device. The app has an integrated push notifications service, an app exclusive dark theme and is free to use for anybody. There are no (hidden) costs!

Senaste nytt

Stöd SpaceWeatherLive.com!

För att vara tillgängliga vid stora norrskensutbrott måsta vi ha kraftiga servrar som kan hantera alla besökare. Donera och stöd vårt projekt, så att vi kan finnas online även under stora stormar!

1%

Rymdvädersfakta

Senaste X-utbrottet:10/09/2017X8.2
Senaste M-utbrottet:20/10/2017M1.0
Senaste geomagnetiska stormen:26/10/2019Kp5 (G1)
Dagar utan solfläckar i 2020:13
Dagar utan solfläckar just nu:12

I dag i historien*

Solutbrott
11999M1.4
22015M1.4
32002M1.3
42003M1.2
52000M1.0
ApG
1200464G3
2200533G2
3201224G1
4200022G1
5200319G1
*sedan 1994

Sociala medier