La traduction de ces articles d'aide est incomplète - Merci de nous contacter si vous souhaitez nous aider à traduire.

What is a space radiation storm?

A space radiation storm (also known as a Solar Proton Event or SPE) occurs often after major eruptions on the Sun when protons get launched at incredibly high speeds up to several 10.000 km/s. These radiation storms can bridge the Sun-Earth distance in as little time as 30 minutes and last for multiple days. In this article we are going to explain what a space radiation storm is and what kind of effects it has on us.

S-scale

NOAA uses a five-level system called the S-scale, to indicate the severity of a space radiation storm. This scale ranges from S1 to S5, with S1 being the lowest level and S5 being the highest level. Every S-level has a pfu (proton flux unit) threshold associated with it. For example: S1 space radiation storm levels are reached when the 10 MeV pfu count reaches a value of 10 at geosynchronous satellite altitudes. Do note that this scale is actually logarithmic. What that means it that a moderate (S2) proton event occurs when the proton flux reaches 100 pfu, not 20! For a strong (S3) space radiation storm, a pfu of 1000 is required. We often use this S-scale on the website so it’s wise to familiarize yourself with it. We can define the following space radiation storm classes:

S-scale Description Flux threshold Average frequency Reliability ACE solar wind data
S1 Minor 101 50 per cycle Data reliable
S2 Moderate 102 25 per cycle Data might be unreliable
S3 Strong 103 10 per cycle Data likely unreliable
S4 Severe 104 3 per cycle Data likely unreliable
S5 Extreme 105 Fewer than 1 per cycle Data likely unreliable

space radiation storm graph

Dangers

Space radiation storms are not dangerous for people on Earth. We are protected from these storms by Earth's magnetic field and Earth's atmosphere. One effect that we can experience on Earth during strong space radiation storms is an increased risk of people on transpolar flights receiving a higher dose of radiation than normal. Transpolar flights sometimes have to be rerouted or cancelled because of these radiation storms. Another effect is that it can cause some communication problems over the polar areas. These protons are also a radiation threat to astronauts, in particular during their extra-vehicular activities (space walks). Satellites out in space are also vulnerable: these protons degrade solar panel efficiency, onboard electronic circuitry can malfunction and the protons will create noise in star-tracking systems.

S-scale Description Impacts
S1 Minor Minor impacts on HF through polar regions.
S2 Moderate Infrequent effects on HF through polar regions and satellite operations.
S3 Strong Degraded HF at polar regions and navigation position errors, satellite effects on imaging systems and solar panel currents, significant radiation hazard to astronauts on extra-vehicular activity (EVA) and high-latitude aircraft passengers.
S4 Severe Blackout of HF through the polar regions and navigation position errors over several days, satellite effects degraded imaging systems and memory device problems, high radiation risk to astronauts on extra-vehicular activity (EVA) and high-latitude aircraft passengers.
S5 Extreme No HF in the polar regions and position errors make navigation operations extremely difficult, loss of some satellites and memory impacts cause loss of control, unavoidable high radiation risk for astronauts on EVA and high-latitude aircraft passengers.

The image below shows you a good example what happens to satellites during space radiations storms. From left to right we see some imagery from two different SOHO instruments. On the left you see how the imagery normally looks when there is no space radiation storm. On the right you can see what happens during a severe S4 space radiation storm. There are so many protons crashing into the camera's sensor that it causes a lot of noise on the images. The images are almost unusable.

space radiation storm

The animation below shows what happens to imaging systems in space during space radiation storms. A strong X-class solar flare erupts and a S4 space radiation storm develops. As you can see, the images before the flare are perfectly usable but right after the flare they have become pretty much unusable.

S4 space radiation storm

Problems with the Advanced Composition Explorer (ACE) during space radiation storms

It is possible that during a space radiation storm, some data coming from the Advanced Composition Explorer (ACE) satellite become contaminated and register false values. This can be seen with the solar wind parameters which comes from the SWEPAM instrument. The solar wind speed becomes lower then it really is and the density becomes less then 1 proton per square centimetre. The data that is related to the interplanetary magnetic field (IMF) remains reliable during a space radiation storm. These false readings can occur when a space radiation storm reaches the S2 level (moderate space radiation storm) and can often continue till well after the arrival of a coronal mass ejection which makes detecting the arrival of a coronal mass ejection a lot harder.

<< Retournez sur la page précédente

Les données disponibles indiquent qu'il n'est actuellement pas possible de voir une aurore sur les latitudes moyennes.

Dernières nouvelles

La météo de l'espace aujourd'hui

L'activité aurorale Faible Fort
Hautes latitudes 30% 40%
Latitudes moyennes 10% 1%
Kp prévisionnel max 4
L'activité solaire
Éruptions solaires classe-M 1%
Éruptions solaires classe-X 1%
B1.2 B1.7 B1.4 B1.5 B3.2 B5.4 B8.4
Phase de la Lune
Nouvelle lune

Aidez SpaceWeatherLive.com !

Vous êtes de plus en plus nombreux à consulter SpaceWeatherLive pour suivre l'activité solaire ou aurorale, et avec le traffic les coûts du serveur augmentent. Si vous appréciez SpaceWeatherLive, soutenez notre projet en faisant un don afin que nous puissions continuer à vous informer !

100%

Qu'est-ce que l'Alerte Aurore ?

La Météo Spatiale en faits

Dernière classe X:10/09/2017X8.2
Dernière classe M:09/09/2017M1.1
Dernier orage géomagnétique:18/09/2017Kp5 (G1)
Nombre de jours sans taches solaires en 2017:56
Dernier jour sans taches solaires:01/08/2017

A ce jour dans l'histoire*

Éruptions solaires
12015M2.1
22002M1.8
31998M1.8
42015M1.5
52002M1.5
ApG
1201544G3
2199634G2
3200327G1
4201618
5200412G1
*depuis 1994