El Viento Solar

The solar wind is a stream of charged particles (a plasma) released from the Sun. This stream constantly varies in speed, density and temperature. The most dramatic difference in these three parameters occur when the solar wind escapes from a coronal hole or as a coronal mass ejection. A stream originating from a coronal hole can be seen as a steady high-speed stream of solar wind as where a coronal mass ejection is more like an enormous fast-moving cloud of solar plasma. When these solar wind structures arrive at Earth they encounter Earth's magnetic field where solar wind particles are able to enter our atmosphere around our planet's magnetic north and south pole. The solar wind particles collide there with the atoms that make up our atmosphere like nitrogen and oxygen atoms which in turn gives them energy which they slowly release as light.

Impresión artística del viento solar cuando viaja desde el Sol y se encuentra con la magnetosfera de la Tierra. Esta imagen no está a escala.
Imagen: Impresión artística del viento solar cuando viaja desde el Sol y se encuentra con la magnetosfera de la Tierra. Esta imagen no está a escala.

La velocidad del viento solar

The speed of the solar wind is an important factor. Particles with a higher speed hit Earth's magnetosphere harder and have a higher chance of causing disturbed geomagnetic conditions as they compress the magnetosphere. The solar wind speed at Earth normally lies around 300km/sec but increases when a coronal hole high speed stream (CH HSS) or coronal mass ejection (CME) arrives. During a coronal mass ejection impact, the solar wind speed can jump suddenly to 500, or even more than 1000km/sec. For the lower middle latitudes a decent speed is required and values higher than 700km/sec are desirable. This is however not a golden rule and strong geomagnetic storming can also occur during lower speeds if the interplanetary magnetic field values are favorable for enhanced geomagnetic conditions. On the data plots you can easily see when a coronal mass ejection shock has arrived: the solar wind speed increases with sometimes several 100km/sec. It will then take about 15 to 45 minutes (depending on the solar wind speed at impact) before the shock wave passes Earth and the magnetometers start to respond.

Llegada de una eyección de masa coronal en 2013, la diferencia de velocidad es obvia.
Imagen: Llegada de una eyección de masa coronal en 2013, la diferencia de velocidad es obvia.

La densidad del viento solar

This parameter shows us how the dense the solar wind is. The more particles in the solar wind, the more chances we get for an auroral display as more particles collide with Earth's magnetosphere. The scale used in the plots on our website is particles per cubic centimeter or p/cm³. A value above 20p/cm³ is a good start for a strong geomagnetic storm but it is no guarantee that we get to see any aurora as the solar wind speed and the interplanetary magnetic field parameters also need to be favorable.

Medición del viento solar

The real-time solar wind and interplanetary magnetic field data that you can find on this website come from the Deep Space Climate Observatory (DSCOVR) satellite which is stationed in an orbit around the Sun-Earth Lagrange Point 1. This is a point in space which is always located between the Sun and Earth where the gravity of the Sun and Earth have an equal pull on satellites meaning they can remain in a stable orbit around this point. This point is ideal for solar missions like DSCOVR, as this gives DSCOVR the opportunity to measure the parameters of the solar wind and the interplanetary magnetic field before it arrives at Earth. This gives us a 15 to 60 minute warning time (depending on the solar wind speed) as to what kind of solar wind structures are on their way to Earth.

La ubicación de un satélite en el punto L1 Sol-Tierra.
Imagen: La ubicación de un satélite en el punto L1 Sol-Tierra.

En realidad, hay un satélite más en el punto L1 Sol-Tierra que mide el viento solar y los datos del campo magnético interplanetario: el Advanced Composition Explorer. Este satélite solía ser la fuente principal de datos hasta julio de 2016, cuando la misión del Observatorio Climático del Espacio Profundo (DSCOVR) entró en pleno funcionamiento. El satélite Advanced Composition Explorer (ACE) todavía está recopilando datos y ahora funciona como una copia de seguridad de DSCOVR.

<< Ir a la pagina previa

Últimas noticias

Apoye a SpaceWeatherLive.com!

Mucha gente viene a SpaceWeatherLive para seguir la actividad del Sol o previsión de aurora, pero con esta cantidad de tráfico se incrementan los costos del servidor. ¡Considere hacer una donación si disfruta de SpaceWeatherLive para que podamos mantener el sitio web en línea!

23%
Apoya a SpaceWeatherLive con nuestro merchandise
Échale un ojo a nuestro merchandise

Hechos clima espacial

Último evento clase X2024/03/28X1.1
Último evento clase M2024/03/29M3.2
Últimas tormentas geomagnéticas2024/03/25Kp5 (G1)
Días sin manchas
Último día sin manchas2022/06/08
Promedio de manchas solares mensuales
febrero 2024124.7 +1.7

Efemérides*

Llamarada solar
12001X2.45
22014X1.45
32023X1.2
42024M3.2
52001M3.13
ApG
1199928G2
2200337G1
3201328G1
4200122G1
5199820G1
*desde 1994

Redes sociales